Mireille Schnitzer, PhD
  • Home
  • CV
  • Research
  • Resources
  • News

New article on Network Meta-analysis

6/22/2015

 
A new article entitled "The causal inference paradigm for network meta-analysis with implications for feasibility and practice" is currently available (pre-peer review) on arXiv stat: 
http://arxiv.org/abs/1506.01583

Network meta-analysis involves the aggregation of study results in order to contrast the effects of different treatments for a common condition. While standard meta-analysis only summarizes over one pair of treatment contrasts, network meta-analysis can combine a multitude of different treatments. 

In this article, we define a nonparametric "effect of interest" in a network meta-analysis over heterogeneous underlying populations. We then develop a set of restrictions that allow for estimation of this effect. We propose several estimators and compare their realistic small-sample performance in a simulation study. Finally, we demonstrate this approach in a real data example to evaluate the relative effectiveness of antibiotics on methicillin-resistant Staphylococcus aureus (MRSA) infection.


FRQS Chercheur-boursier 2015

5/7/2015

 
Je suis très heureuse d'annoncer que j'ai reçu la bourse de carrière Chercheur boursier (Junior 1) du Fonds de recherche du Québec, Santé (FRQS). Le titre de mon programme de recherche est

"Développement de méthodes avancées pour l'évaluation de l'efficacité et de l'innocuité des médicaments utilisant des bases de données électroniques."



I'm very pleased to announce that I received a Research Fellowship from the Fonds de recherche du Québec, Santé (FRQS) under the Chercheur boursier Junior 1 competition. The title of my research program is

"Advanced methods development for the evaluation of medication efficacy and safety using electronic medical databases."

NSERC/CRSNG Discovery Grant 2015

4/27/2015

 
I'm very pleased to announce that my program "Data-adaptive learning in causal inference for high-dimensional data structures" was awarded funding through NSERC's 2015 Discovery Grant and Discovery Grant Accelerator programs.

I am therefore recruiting PhD and/or masters students to begin work on projects related to causal inference in high-dimensional settings, Targeted minimum loss-based estimation for longitudinal data, and causal variable selection. 

Interested students should apply by emailing me a short (but specific) statement of interest and their CV.

Recrutement en recherche (PhD) / New research position (PhD)

9/24/2014

 
(English follows)

J'accepte présentement des candidatures pour des études de troisième cycle (Ph. D.) en biostatistique, qui débuteraient en septembre 2015 (flexible). Les projets impliqueraient le développement ou l’extension de méthodes statistiques pour l'inférence causale, avec des applications intéressantes dans le domaine de la santé. L'inférence causale s'intéresse à la détermination des effets des interventions médicales ou de santé publique utilisant des données observationnelles.  Mon programme de recherche est largement fondé sur le développement de la méthodologie causale pour les grandes bases de données électroniques.

Les candidats doivent posséder (ou être en train de terminer) un diplôme de maîtrise en statistique, biostatistique ou dans un domaine connexe (comme l'informatique ou épidémiologie) et posséder une excellente connaissance de la théorie et des méthodes statistiques. Des compétences informatiques en statistique sont également nécessaires.

SVP, contacter Dre Mireille Schnitzer à mireille.schnitzer@umontreal.ca pour plus d'information ou pour soumettre une candidature.

------

I am currently accepting applications for a PhD student in Biostatistics, to start in September 2015 (flexible). The projects would entail the development or extension of cutting-edge statistical methods in causal inference, with interesting health applications to determine the effects of medical or public health interventions. I am particularly interested in the development of causal inference methodology for large electronic databases.

Applicants must possess (or be in the process of completing) a masters degree in statistics, biostatistics or related field (such as computer science or epidemiology) and have excellent knowledge of statistical theory, methods and implementation. Statistical computing skills are also required.

Please contact Dr. Mireille Schnitzer at mireille.schnitzer@umontreal.ca for more information or to apply.


<<Previous
Forward>>

    News

    Announcements related to my research and career, including openings for new students and postdocs.

    Archives

    February 2023
    July 2022
    November 2020
    December 2019
    August 2019
    August 2017
    June 2017
    February 2017
    August 2016
    March 2016
    August 2015
    June 2015
    May 2015
    April 2015
    September 2014

    Categories

    All
    Article
    Award
    Causal Inference
    Media
    NMA
    Positions

    RSS Feed

Powered by Create your own unique website with customizable templates.